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The Lagrangian averaged Navier–Stokes–alpha (LANS−α) model of turbulence is
found to possess a Kármán–Howarth (KH) theorem for the dynamics of its second-
order autocorrelation functions in homogeneous isotropic turbulence. This KH result
implies that alpha-filtering in the LANS−α model of turbulence does not affect
the exact Navier–Stokes relation between second and third moments at separation
distances large compared to the model’s length scale α. Moreover, at separations r that
are smaller than α, the KH scaling between energy dissipation rate and longitudinal
third-order autocorrelation changes to match the scaling found in two-dimensional
incompressible flow. This is consistent with the corresponding change in scaling of
the kinetic energy spectrum from k−5/3 for larger scales with kα < 1, which switches
to k−3 for smaller scales with kα > 1, as discovered in Foias, Holm & Titi (2001).

1. Introduction
1.1. Lagrangian-averaged Navier–Stokes–alpha (LANS−α) model

Recently, a modification of the Navier–Stokes (NS) equations known as the Lagran-
gian-averaged Navier–Stokes–alpha (LANS−α) model was introduced and its steady
solutions were compared with experimental data for turbulent flow in pipes and
channels in Chen et al. (1998, 1999a, b). These modified equations essentially filter
the fluid motion that occurs below a certain length scale (denoted as α), which
is a parameter in the model. In the LANS−α model, the length scale alpha is
the filter width obtained from inverting the Helmholtz operator 1 − α2∆. Amongst
other differences from traditional turbulence modelling approaches, this Helmholtz-
filtering approach differs from the large eddy simulation (LES) approach by preserving
the basic transport theorems for circulation and vorticity dynamics of the exact
NS equations. Comparisons of the LANS−α model of turbulence with the LES
approach were investigated for a turbulent mixing layer in Geurts & Holm (2002).
Direct numerical simulations (DNS) of the LANS−α model for forced homogeneous
turbulence were performed in Chen et al. (1999c). Decay of homogeneous turbulence
was also simulated numerically using this model in Mohseni et al. (2000). All these
simulations showed the LANS−α model to be considerably less computationally
intensive than the exact NS equations, while preserving essentially the same behaviour
as NS at length scales larger than α. The basic properties of the LANS−α model and
its early development are reviewed in Foias, Holm & Titi (2001). See also Marsden &
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Shkoller (2001) and Foias, Holm & Titi (2002) for recent analytical and geometrical
results for this model.

1.2. Kármán–Howarth (KH) theorem

The invariant theory of isotropic turbulence was introduced by Kármán & Howarth
(1938) and refined by Robertson (1940), who reviewed the Kármán–Howarth (KH)
theorem in the light of classical tensor invariant theory. The KH theorem relates the
time derivative of the two-point velocity autocorrelation functions to the divergences
of the third-order correlation functions. The physical importance of the KH theorem
in turbulence modelling is undeniable and the line of investigation that began in 1938
with the KH theorem is still being actively pursued. According to Monin & Yaglom
(1975) (vol. II, p. 122) the KH theorem’s dynamical equation for the two-point
autocorrelation function of the fluid velocity, ‘plays a basic part in all subsequent
studies in the theory of isotropic turbulence’. A homogeneous (but not necessarily
isotropic) version of the KH theorem was discussed by Monin & Yaglom (1975) (vol.
II, p. 403), but there was a gap in the proof. Correct proofs were given independently
by Frisch (1995) and Lindborg (1996). These proofs were reviewed in Hill (1997), who
concentrated on the logical steps needed to eliminate pressure–velocity correlations in
the KH theorem without assuming isotropy. See also Hill (2001) and Hill & Boratav
(2001).

The KH theorem and its corollary, the 2/15 law for velocity autocorrelation
functions, are proved here for the LANS−α model. These exact results demonstrate
how the introduction of the length scale α using Helmholtz filtering affects the
dynamics of the velocity autocorrelations as a function of separation between two
points fixed in the domain of an isotropic LANS−α flow. The effects turn out to be
negligible at separations that are large compared to the filtering scale α (r � α). In
contrast, at separations r smaller than α, we find the scaling between dissipation rate
and velocity changes to match that found in two-dimensional incompressible flow.
This is consistent with the corresponding change in energy spectrum scaling from
k−5/3 for kα < 1, to k−3 for kα > 1, that was discovered in Foias et al. (2001).

1.3. The KH theorem and two time scales of turbulence

Two time scales of interest here may be formed from the mean parameters of
turbulence. The first is the cascade time scale, T1, implicit in Kolmogorov (1941) and
given in terms of energy dissipation rate ε, wavenumber k and mass M by the rate

1

T1

=

(
ε k2

M

)1/3

(Kolmogorov’s cascade rate). (1.1)

Kolmogorov’s cascade rate 1/T1 increases with wavenumber as k2/3 independently of
viscosity. So the cascade rate accelerates as it proceeds to smaller length scales. The
second time scale is Obukhov’s eddy turnover time scale, T2, given by the rate

1

T2

=

(
E(k) k3

M

)1/2

(Obukhov’s eddy turnover rate). (1.2)

This estimates the rate at which energy progresses from wavenumber k to wavenumber
2k. The E(k) ' k−5/3 scaling of the kinetic energy spectral density emerges from the
Kolmogorov (1941) ‘theory of locally isotropic turbulence’ by using a scaling argument
admitted by the 4/5 law corollary of the Kármán & Howarth (1938) theorem for
the structure functions of self-similar, isotropic homogeneous flows of the Navier–
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Stokes equations. The E(k) ' k−5/3 scaling of the kinetic energy spectrum implies
that the squared ratio of the two time scales (T1/T2)

2 is a constant, independent of
wavenumber, which Kolmogorov (1941) found to take the value(

T1

T2

)2

= CK ' 1.5 (Kolmogorov’s constant). (1.3)

The Kármán–Howarth–alpha theorem for the Navier–Stokes–alpha model proved in
this paper admits the same E(k) ' k−5/3 spectral density scaling of the kinetic energy
for self-similar flows at kα < 1, so that for these larger length scales in the LANS−α
model one still has

E(k) =

(
T1

T2

)2

M1/3ε2/3 k−5/3 = CKε
2/3 k−5/3 for kα < 1. (1.4)

However, for kα > 1 the Kármán–Howarth–alpha theorem proven here for isotropic
homogeneous flows of the LANS−α equations admits, for self-similar flows at the
smaller length scales

E(k) ' k−3 for kα > 1 in the LANS–α model. (1.5)

Consequently, in the LANS−α model, Obukhov’s eddy turnover rate 1/T2 in (1.2) is
constant for small scales satisfying kα > 1. Physically, this means length scales that
are smaller than α will all be swept along together by the larger scales in the α model.
Being swept together by the larger scales, the smaller length scales can phase-lock at
the Obukhov eddy turnover time scale near kα = 1. Phase-locking allows coherent
structures to form at length scales smaller than α. Such coherence is validated here by
finding the Hölder index to be unity (Lipschitz continuity) for self-similar LANS−α
velocity fields at separations r < α. This result is consistent with the estimate of Foias
et al. (2001),

E(k) =
CKε

2/3k−5/3

(1 + α2k2)2/3
, (1.6)

for the scaling of the LANS−α spectral density for kinetic energy. Estimates of the
size of α (smaller than the integral scale and larger than the dissipation scale) are also
discussed in Foias et al. (2001). The size of α corresponds to the correlation length of
Lagrangian fluid trajectories.

If constant 1/T2 allows the coherence identified by Lipschitz continuity of the
self-similar LANS−α velocity fields at small separations r < α, then intermittency
and anomalous scaling could be expected to be reduced in the LANS−α model for
kα > 1. This is consistent with the Fourier transform representation in which the
alpha-smoothing retains sweeping of the small scales by the large scales, but reduces
the nonlinear interactions amongst the small scales for kα > 1. Equation (1.6) follows
from an analysis in Foias et al. (2001) based on using the symbol (1 + α2k2) of the
Helmholtz operator in Fourier space, in combination with an argument of Kraichnan
(1967) that associates energy transfer rates and eddy turnover times for the filtered
velocity. Physically, introduction of a finite correlation length for Lagrangian fluid
trajectories in the α model modifies the nonlinearity to eliminate the faster and faster
interactions amongst smaller and smaller scales, while preserving the sweeping of the
small eddies by the larger flow structures.

Section 2 reviews the LANS−α model and presents two equivalent formulations
of its motion equations that will be instrumental in establishing the KH theorem for



208 D. D. Holm

its correlation dynamics and its 2/15 law in § 3. Section 4 discusses these results and
presents our conclusions and outlook.

2. Two equivalent formulations of the LANS−α model equations
The LANS−α equations are given by

∂tv + u · ∇v + vj∇uj + ∇(p− 1
2
|u|2 − 1

2
α2|∇u|2) = ν∆v + f, (2.1)

where v ≡ u− α2∆u, ∇ · u = 0 and u = 0 on the boundary.
In LES terminology, one would call u the filtered velocity and v the ‘defiltered’

velocity. Both u and v are mean velocities obtained in a closure approximation based
on the Taylor hypothesis that turbulent fluctuations are ‘frozen’ into the mean flow
u. (Taylor’s hypothesis is a vital step in the closure procedure that leads to the NS−α
model.) From the viewpoint of the Lagrangian mean theory of Andrews & McIntyre
(1978), the difference v − u = −α2∆u is the mean ‘pseudomomentum’ obtained by
using the Taylor hypothesis closure. The divergence-free condition ∇ · u = 0 in (2.1)
is an additional constraint on u. (For constant α, the velocity v is also divergenceless.)
Preservation of this constraint will determine the mean pressure p. The unforced,
inviscid form of these equations, as well as related equations for geophysical and other
flows, first appeared in the context of averaged fluid models in Holm, Marsden &
Ratiu (1998a, b). Their derivation used Lagrangian averaging and asymptotic methods
in the variational formulation that modified the pressure terms in equation (2.1).
Viscosity was added to the conservative dynamics in Chen et al. (1998, 1999a, b, c).
Alternative derivations were given in Holm (1999, 2002) and in Marsden & Shkoller
(2001). Being a Lagrangian-averaged model, the LANS−α equations (2.1) possess a
Kelvin circulation theorem,

d

dt

∮
c(u)

v · dx =

∮
c(u)

{ν∆v + f} · dx, (2.2)

where c(u) is a material curve that moves with the filtered velocity.
The LANS−α motion equation (2.1) may be reformulated equivalently as

(1− α2∆)(∂tu+ u · ∇u− ν∆u+ ∇p̃+ f̃ + α2 div τ̃) = 0 with ∇ · u = 0. (2.3)

Here the stress tensor divergence div τ̃ is defined by

(1− α2∆) div τ̃ ≡ div τ ≡ div(∇u · ∇u+ ∇u · ∇uT − ∇uT · ∇u). (2.4)

Specifying homogeneous boundary conditions in the inversion of the Helmholtz
operator (1− α2∆) in (2.3) allows us to write the LANS−α equation (2.1) both in the
interior and on the boundary as

∂tu+ u · ∇u− ν∆u+ ∇p̃+ f̃ + α2 div τ̃ = 0 with ∇ · u = 0. (2.5)

This has the same form as the NS equations, except for the additional term propor-
tional to α2. This equation may be rewritten in three-dimensional Cartesian compo-
nents as

∂tui + ∂k(uiu
k + p̃δki )− ν∆ui = −α2∂k(gα ∗ τki ), where i, j, k ∈ 1, 2, 3, (2.6)

τ̃ = gα ∗ τki ≡
∫
gα(|x′ − x|) τki (x′) d3x′, τki ≡ (ui,ju

j,k + ui,ju
k,j − uj,iuj,k). (2.7)

Here, gα is the free-space Green’s function for the Helmholtz operator in three
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dimensions, gα(r) = (4πα2r)−1 exp (−r/α), which is the well-known Yukawa potential
for r = |x′ − x|. This free-space Green’s function should apply to the extent that the
turbulence is isotropic (so that α can be taken as constant) and occurs away from
boundaries at distances greater than order O(α).

This free-space form of the LANS−α equation demonstrates that the nonlinear
stresses proportional to α2 are filtered by the Green’s function gα(r) of the Helmholtz
operator, whose filter width is O(α). Given α, the term gα∗τki is significant at separations
r such that r/α 6 1 and is negligible for r/α� 1. For the larger separations, the
LANS−α equation reverts to NS. The α-filtering is a regularization. With α-filtering,
the solutions of LANS−α are well-posed and have a finite-dimensional global attractor
under L2−bounded forcing, as shown in Foias et al. (2002) for a periodic domain.
See also Marsden & Shkoller (2001) for a proof of their well-posedness in a compact
domain. Such well-posedness results are not known to hold for the NS equations.
However, solutions of the LANS−α equations do converge to solutions of the NS
equations uniformly as α→ 0 for any positive viscosity, as was shown in Foias et al.
(2002) for a periodic domain.

3. The equations governing the LANS−α velocity correlations

In deriving the correlation dynamics, one may regard (gα∗τ′j k) as a subgrid scale
(actually, sub-α-scale) stress tensor arising from the alpha-filtering procedure repre-
sented by convolution with the free-space Green’s function gα(r), which decreases
exponentially in separation with scale length α. See Holm (1999, 2002) and Marsden
& Shkoller (2001) for further analysis and explanation of how this viewpoint arises,
upon applying Lagrangian averaging. We denote u(x′, t) = u′ and begin our investi-
gation of the correlation dynamics by computing the ingredients of the partial time
derivative ∂t(viu

′
j),

∂tvi + ∂k(viu
k + pδki − α2ui,mu

m,k) = ν∆vi, (3.1)

∂tu
′
j + ∂′k(u

′
ju
′k + p̃′δkj ) + α2∂k(g ∗ τ′j k) = ν∆′u′j . (3.2)

We cross multiply and add these equations, average the result ( · ) and use statistical
homogeneity in the following form, with ξ ≡ x′ − x, in the traditional KH notation:

∂

∂ξk
( · ) =

∂

∂x′k
( · ) = − ∂

∂xk
( · ), (3.3)

to find the ‘Reynolds equation’ for the LANS−α model†:
∂t (viu

′
j)− ∂

∂ξk
((viuk − α2 ui,mum,k)u

′
j) +

∂

∂ξk
((vip̃′)δkj − (u′jp)δ

k
i )

+
∂

∂ξk
(vi(u

′
ju
′k + α2 g ∗ τ′j k)) = 2ν∆ξ(viu

′
j), (3.4)

where ∆ξ is the Laplacian operator in the separation coordinate ξ. Next, we sym-
metrize in i, j and use the relation obtained from homogeneity,

(viu
′
ju
′k + vju

′
iu
′k) = −(v′iujuk + v′juiuk), (3.5)

† This ‘mixed’ correlation function is chosen for convenience in interpretation of the results to
follow.
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to find the homogeneous correlation dynamics for LANS−α,
∂t(viu

′
j + vju

′
i)− ∂

∂ξk
(Tk

ij − α2Sk
ij −Πk

ij) = 2ν∆ξ(viu
′
j + vju

′
i). (3.6)

In this equation, the three symmetric tensors Tk
ij , Π

k
ij and Sk

ij are defined as

Πk
ij ≡ (vip̃ ′) δkj + (vjp̃ ′) δki − (u′jp) δki − (u′ip) δkj ,

Tk
ij ≡ (viu

′
j + vju

′
i + v′iuj + v′jui) uk,

Sk
ij ≡ (ui,mu

′
j + uj,mu

′
i)u

m,k + (vig ∗ τ′j k + vjg ∗ τ′ik).

 (3.7)

If equation (3.6) is regarded as the Reynolds stress equation for the LANS−α model,
then the combination of the three symmetric tensors in (3.7) comprises its stress flux.

3.1. Imposing isotropy

We now suppose that the LANS−α solution is isotropic and follow the classical
approach of Kármán & Howarth (1938), as refined by Robertson (1940) and Chan-
drasekhar (1951) using the invariant theory of isotropic tensors. Isotropy implies that
we may drop the pressure–velocity tensor Πk

ij . Hence, we rewrite equation (3.6) as

∂

∂t
Qij =

∂

∂ξk
(Tk

ij − α2Sk
ij) + 2ν∆ξQij , (3.8)

with the corresponding definition, Qij ≡ (viu
′
j + vju

′
i). According to their definitions,

both the tensors Qij and Tk
ij are symmetric and divergence-free in their indices i, j

for constant α. For consistency with the isotropy assumption, equation (3.8) implies
that Sk

ij must also be symmetric and divergence-free in its indices i, j.
According to the theory of invariants discussed in Robertson (1940) and Chan-

drasekhar (1951), these three symmetric, divergence-free, isotropic tensors may each
be expressed in terms of a single defining function. In particular, the isotropic u–v
autocorrelation tensor Qij is given by

Qij = curl(Qεij`ξ
`) = rQ′

(
ξiξj

r2
− δij

)
− 2Qδij , (3.9)

with defining function Q(r, t) and Q′ = ∂Q/∂r in the KH notation. The isotropic triple
correlation tensor is

Tk
ij = curl(T (ξiεjk`ξ

` + ξjεik`ξ
`)) =

2

r
T ′ξiξjξk − (rT ′ + 3T )(ξiδjk + ξjδik) + 2Tδijξk,

(3.10)

with defining function T (r, t) and antisymmetric tensor εij`. Hence, we compute the
divergence,

∂

∂ξk
Tk

ij = curl((rT ′ + 5T )εij`ξ
`) = curl

(
1

r4
(r5T )′εij`ξ`

)
. (3.11)

This is formula (45) in Chandrasekhar (1951) and is also the corresponding formula
(4.13) in Robertson (1940). Likewise, the isotropic mean sub-α-scale stress flux tensor
Sk

ij must also take the same form,

∂

∂ξk
Sk

ij = curl((rS ′ + 5S)εij`ξ
`) = curl

(
1

r4
(r5S)′εij`ξ`

)
, (3.12)

with defining function S(r, t).
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Remark. Due to the presence of curl in their definitions, the defining functions T and
α2S have dimensions of energy dissipation rate, (u2)3/2r−1. Note the r−1 in T and α2S
for later comparison with the defining functions in Kármán & Howarth (1938).

3.2. The equations governing the defining scalars

According to Robertson (1940), the scalar defining the Laplacian of a second-order
isotropic tensor is obtained by operating with

D =

(
∂2

∂r2
+

4

r

∂

∂r

)
=

1

r4

∂

∂r
r4 ∂

∂r
, (3.13)

on the scalar defining the original tensor. That is,

D(Q) = r−4(r4Q′)′. (3.14)

The scalars defining the various second-order tensors in equation (3.8) are, therefore,

∂Q

∂t
,

(
r
∂

∂r
+ 5

)
T =

1

r4
(r5T )′,

(
r
∂

∂r
+ 5

)
S =

1

r4
(r5S)′, D(Q). (3.15)

As Robertson (1940) points out, upon assuming isotropy, the tensor equation (3.8) is
entirely equivalent to the corresponding scalar equation. Substituting the four scalar
expressions in (3.15) into equation (3.8) proves the following theorem.

KH theorem for the LANS−α model. Let the LANS−α model flow be homogen-
eous and isotropic. Then the Reynolds relation (3.8) is equivalent to the scalar equation,

∂Q

∂t
=

(
r
∂

∂r
+ 5

)
(T − α2S) + 2νD(Q). (3.16)

Remark. Formula (3.16) is the analogue for the LANS−α fluid equations of the KH
theorem for NS turbulence.

Upon setting ∂Q/∂t = −2εα/3 for the energy dissipation rate in three dimensions
and dropping the viscous terms in equation (3.16) – as is appropriate for separation r
in the inertial range – one finds the energy balance relation for the LANS−α model,

− 2
3
εα =

1

r4

∂

∂r
(r5(T − α2S)). (3.17)

Here, εα denotes the average dissipation rate of the total kinetic energy for the
LANS−α model, given by Eα = 1

2

∫
u ·v d3x. Integration of the energy balance relation

(3.17) then proves the following corollary.

‘2/15 law’ for the LANS−α model. In the inertial range and for arbitrary ratio
α/r, the LANS−α model satisfies the ‘2/15 law’,

− 2
15
εα = T − α2S. (3.18)

Remark. Formula (3.18) is the analogue for the LANS−α fluid equations of Kol-
mogorov’s ‘4/5 law’ for the relation between kinetic energy dissipation rate and
longitudinal velocity structure functions in isotropic homogeneous NS turbulence.
(Recall that the defining functions T and α2S in (3.18) have dimensions of energy
dissipation rate, (u2)3/2r−1, which differ by the factor r−1 from the defining functions
in Kármán & Howarth (1938) for the NS equations. The factor (2/15)=(1/6)(4/5)
arises from the 1/6 relation between autocorrelation functions and structure functions
in isotropic turbulence.)



212 D. D. Holm

3.3. Convergence to the NS turbulence theory for α/r → 0

Foias et al. (2002) show that solutions of the LANS−α model converge to solutions of
the NS equations as α→ 0 in a periodic domain uniformly for any positive viscosity.
Therefore, to compare the KH−α theorem with the results of Kármán & Howarth
(1938) for the NS equations, we may consider the limit as α/r → 0. In this limit,
one may neglect α2S in equations (3.17) and (3.18). We follow Robertson (1940) in
identifying the KH double correlation scalars f(r, t), g(r, t) as

(u2)f = Q and (u2)g = 1
2
rQ′. (3.19)

Likewise, the KH triple correlation scalars h, k and q are identified in terms of T (r, t),
as (u2)3/2h = rT/2 for h, as well as

(u2)3/2k = − 1

r4

∫ r

0

s4T ds and (u2)3/2q =
1

8r4

∫ r

0

s4T ds− r

4
T , (3.20)

for k and q. Using the relation T = 2(u2)3/2h/r yields,(
r
∂

∂r
+ 5

)
T = 2(u2)3/2

(
∂

∂r
+

4

r

)
h. (3.21)

Hence, when α/r → 0, equation (3.16) of the KH−α theorem recovers equation (51)
of Kármán & Howarth (1938), namely, the KH equation,

(u2)
∂f

∂t
=

(
∂

∂r
+

4

r

)[
2(u2)3/2h+ 2ν(u2)

∂f

∂r

]
. (3.22)

One may refer to Monin & Yaglom (1975, p. 122), for the KH equation in their
notation. When the factor 1/6 relating third-order autocorrelation functions and
structure functions is introduced, this is also equation (3) of Kolmogorov (1941),
leading to the Kolmogorov’s 4/5 law for Navier–Stokes fluids. See also Landau &
Lifschitz (1987) for additional discussion of this fundamental result.

Thus, the limit α/r → 0 of formula (3.16) of the KH−α theorem recovers the
expected classical results for homogeneous, isotropic, NS turbulence.

3.4. Differences from NS turbulence theory for r < α

The second term in the 2/15 law in equation (3.18) (the α2S term on the right-
hand side) is reminiscent of the quantity that appears in the corresponding ‘−2 law’
for enstrophy cascade in two-dimensional turbulence. The latter expression contains
two powers of enstrophy and one power of velocity. For example, see Appendix
B of Eyink (1996), where this identity for two-dimensional turbulence is derived in
detail. Likewise, the α2S term in (3.18) contains two powers of velocity gradient
and one of velocity. Consequently, this should be the dominant term (compared to
the first T-term) for small separations, when r < α. If the LANS−α flow is self-
similar, the dominance of the α2S term in (3.18) when r < α admits the following
scaling argument. Following Kolmogorov (1941) as amplified by Frisch (1995), let the
longitudinal velocity difference δu‖(x, r) = [u(x + ξ) − u(x)] · ξ/r satisfy the scaling
relation δu‖(x, λr) = λhδu‖(x, r) for all x and all increments r = |ξ| and λr small
compared to α. By dimensional analysis, [S(λr)] = [(δu‖)3/r3] = [S(r)]. Consequently,
3h − 3 = 0 and, thus, h = 1 for small scales r < α in a self-similar LANS−α flow.
This means the second-order structure functions follow r2 scaling for r < α in such
a flow. This r2 scaling implies a k−3 law for the kinetic energy spectral density in
that range for the LANS−α model. Thus, we find a self-similar k−3 ‘enstrophy-like’
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cascade, in agreement with the considerations of Foias et al. (2001). The linear law
h = 1 for its velocity increment at small scales means that the self-similar LANS−α
flow velocity is Lipschitz-continuous. This contrasts with Navier–Stokes velocity, for
which a similar argument implies Hölder continuity with index h = 1/3.

4. Conclusions
The KH theorem for the LANS−α model in equation (3.16) and its corresponding

‘2/15 law’ in equation (3.18) recover the classical results of Kármán & Howarth (1938)
and Kolmogorov (1941) in the limit that α/r → 0. These classical results include the
r2/3 law for the second velocity moments and thus the k−5/3 energy spectrum for
self-similar homogeneous isotropic NS turbulence at large scales. Hence, α-filtering
leaves these velocity autocorrelation statistics for homogeneous isotropic turbulence
undisturbed at sufficiently large separations, α/r � 1. One may also ask how the
α-modification affects higher-order correlation functions in the NS−α model. This
question addresses the effects of the α-modification on intermittency. Answering
it will require numerical investigation of the higher autocorrelation functions, or
structure functions for the LANS−α model. This topic will be discussed elsewhere.

The LANS−α results for the KH theorem and its ‘2/15 law’ differ significantly
from classical NS turbulence theory for r < α. At these small separations, the 2/15
law for the LANS−α model implies an r2 law instead of the NS r2/3 law for its second
velocity moments at small scales. The r2 law for the second moments implies the
Hölder index is unity and, thus, the LANS−α self-similar homogeneous isotropic flow
velocity is Lipschitz-continuous at small scales. Lipschitz continuity indicates coherent
behaviour, so one may expect intermittency and anomalous scaling to be reduced
in the LANS−α model for kα > 1. This topic will also be discussed elsewhere. The
r2 law corresponds to an ‘enstrophy-like’ k−3 self-similar energy cascade for kα > 1,
which sustains the considerations of Foias et al. (2001) who first discovered the k−3

kinetic energy spectrum of the LANS−α model for kα > 1.

I am grateful to S. Chen, P. Davidson, G. Eyink, U. Frisch, R. M. Kerr, S. Kurien,
J. E. Marsden, S. Shkoller, K. Sreenivasan, E. Titi, M. Vergassola and B. Wingate
for their enormously helpful comments and encouragement. In particular, G. Eyink
first observed that the scaling in the 2/15 law in equation (3.18) for r � α admits
an ‘enstrophy-like’ self-similar cascade. This work was supported by DOE contract
W-7405-ENG-36.
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